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Abstract

In this paper we present the ‘‘random walk on the boundary’’ method for the rapid solution of integral equations

that arise in electrostatics and related areas. This method is a Monte Carlo method based on the construction of a

Markov chain that is readily interpreted as a random walk along the boundary over which integration in the integral

equation is taken. To illustrate the usefulness of this technique, we apply it to the computation of the capacitance of the

unit cube. Obtaining the capacitance of the cube usually requires computing the charge density, and this problem has

been used as a benchmark by many in the field for algorithms of this kind. Here, the ‘‘random walk on the boundary’’

method does not require charge density computation, and obtains the capacitance of the cube within a statistical error

of 2:7� 10�7, the most accurate estimate to date.

� 2003 Elsevier Inc. All rights reserved.
1. Introduction

In this paper we present a new class of stochastic algorithms, those based on the ‘‘random walk on the

boundary’’ Markov chain. We use these to consider a stochastic computational approach to a classical

problem in electrostatics, the so-called Robin problem: the computation of the charge distribution on the

surface of a conductor held at a given potential. This problem and related ones are still topical in many
technical applications, and not only in electronics but in computational biophysics of biomolecules as well

(see e.g. [1,2]). This paper is thus an introduction to the ‘‘random walk on the boundary’’ Monte Carlo

method to a class of problems to which this method has never before been applied. We hope this work will

convince others of the efficacy of this stochastic method, and encourage them to apply it to their own

problems. It should be clear to the reader that while we focus specifically on problems in electrostatics in
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this paper, that the ‘‘walk on the boundary’’ method is a power tool for solving a variety of elliptic

boundary value problems.

Going all the way back to Maxwell�s time, the boundary element method was effectively used to solve the
Robin problem and to calculate the capacitance as the surface integral of the computed charge density [3].

The common deterministic approach is to divide the conductor surface into segments, and to use a

piecewise polynomial (on segments) approximation to the charge density, with the assumption that the

discretized segments are sufficiently small. Next, the linear dependence between the segment potentials and

their charges makes it possible to reduce the problem to a system of algebraic equations, which can be

solved by an appropriate numerical method. Hence the computation of capacitance finally requires one to

sum up all the computed segment charges. The accuracy of this computation can be improved by ex-

trapolating the computed solution to a polynomial in 1=N , where N is the number of subdivisions [4]. The
alternative approach to finding the charge density is to calculate it as an element in the eigenspace of a

particular integral operator [5,6].

As far as stochastic computational methods are concerned, it is commonly held that these methods are

most efficient when point values or linear functionals of the solution are needed, or when a solution is

needed to just a few percent accuracy. Generally, when either a global solution or a high accuracy solution

is desired, stochastic approaches are not normally considered appropriate. Recently, it has been found that

in computing the capacitance, the diffusion limited reaction rate, and other related properties of arbitrary

shaped bodies, stochastic simulation algorithms can be competitive with boundary element and other
conventional deterministic computational methods [7]. In many cases, simple Brownian dynamics simu-

lations can be substantially refined, making it possible to use the walk on spheres (WOS) [8] and the Green�s
function first passage (GFFP) Monte Carlo methods [9]. Elimination of the WOS bias due to the boundary

with GFFP, the simulation–tabulation technique [10], and last passage variants of these Monte Carlo al-

gorithms [11] further extend the capabilities of stochastic computational methods when applied to elec-

trostatics problems. The progress achieved so far stimulated our investigation of the ‘‘random walk on the

boundary algorithm’’ [12] as applied to capacitance and charge density calculations. The idea of using this

method on these types of problems dates back to [13]. Here, we thoroughly investigate the computational
algorithm based on this approach, the conditions of its applicability, the rate of convergence, and compare

it to other Monte Carlo and deterministic methods when applied to the model problem of finding the

capacitance of the unit cube.
2. Surface potential and the ergodic theorem

Let G 2 R3 be a compact set representing an electrical conductor. Our goal is to calculate C, the ca-
pacitance of G, and l, the charge distribution on its surface, oG.

Mathematically, the problem is to compute the integral

C ¼
Z
oG

lðyÞ drðyÞ

and the function

lðyÞ ¼ � 1

4p
ou
on

ðyÞ; ð1Þ

defined on oG, provided that u satisfies Laplace equation in the exterior of G

DuðxÞ ¼ 0:



M. Mascagni, N.A. Simonov / Journal of Computational Physics 195 (2004) 465–473 467
In addition, we impose the condition that u ! 0 as jxj ! 1, and that

uðyÞ ¼ 1; y 2 oG:

Above, nðyÞ is the unit normal vector pointing towards the outside the domain, G.
We assume that the boundary, oG, is sufficiently smooth to guarantee the existence and uniqueness of the

exterior Dirichlet problem we have formulated. It is sufficient, for example, to demand that oG be a regular

piecewise Lyapunov surface [14]. In this case it is possible to represent u as a single layer potential

uðxÞ ¼
Z
oG

1

jx� y0j lðy
0Þ drðy 0Þ

with a charge density, l, that is the unknown. In this case u is commonly called the Robin potential.

To find an equation satisfied by l, we make use of the well-known jump properties of the Robin po-

tential�s normal derivative. Hence, we have (for x 2 R3 n G and y 2 oG, j cosuyxj ¼ jðy � xÞ=jx� yj �
nðyÞjP a > 0)

ou
on

ðyÞ ¼ lim
x!y

ðrxuðxÞÞ � nðyÞ ¼ �
Z
oG

cosuyy0

jy � y 0j2
lðy 0Þ drðy0Þ � 2plðyÞ: ð2Þ

From (1) and (2) it follows that

lðyÞ ¼
Z
oG

cosuyy0

2pjy � y 0j2
lðy0Þ drðy0Þ;

or in operator notation

l ¼ Kl:

These equations imply that l is the eigenfunction of the integral operator, K, corresponding to the

maximal eigenvalue, which equals 1 [15].

Suppose that G is convex, then the kernel of the integral operator kðy; y0Þ ¼ cosuyy0=ð2pjy � y0j2Þ is non-
negative andZ

oG

cosuyy0

2pjy � y0j2
drðyÞ ¼ 1:

This normalization means that kðynþ1; ynÞ ¼ pðyn ! ynþ1Þ can be used as a transition probability density to

construct a Markov chain fyng1n¼1 of points on oG. This density function corresponds to a uniform dis-

tribution of successive points, ynþ1, in the solid angle with vertex yn. This is the so-called isotropic ‘‘random

walk on the boundary’’ [12] process.

Hence, we can think of Xðy 0; 1Þ ¼
R
1 kðy; y0Þ drðyÞ as a probability measure defined for every open set 1 in

oG that is based on choosing points uniformly in a solid angle with the vertex, y0, subtended by 1.
If oG is strictly convex, then the angle measure, X, and surface measure, r, are absolutely continuous,

meaning that Xðy 0; 1Þ is strictly positive [16]. It is well known [17] that the weakly singular integral operator,

K, is completely continuous. Thus, Xðy0; 1Þ is regular and we can apply the ergodic theorem to statistics

created using this Markov chain [16].

Suppose now that there are planar segments of the boundary. In this case not every set of non-zero

surface area rð1Þ has non-zero angle measure Xðy0; 1Þ for all points y 0 2 oG. However, it can be easily shown

that the second iteration, K2, of the integral operator defines a strictly positive measure Xð2Þðy0; 1Þ ¼R
oG Xðy; 1Þkðy; y0Þ drðyÞ. Thus, we can apply the ergodic theorem in this case as well.
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Therefore, by this theorem, there exists a positive stationary distribution, P1, of the Markov chain as

defined above. This means that

P1ð1Þ ¼
Z
oG

P1ðdrðy0ÞÞXð2Þðy 0; 1Þ

for every open set 1 � oG. This also implies that the distribution is absolutely continuous and its density,

p1, satisfies the equation

p1ðyÞ ¼ K2p1ðyÞ:

Hence, since l ¼ Kl ¼ K2l,

l ¼ Cp1 ð3Þ

for some constant C. This constant must equal the capacitance of G, since p1 is a probability density.

Here, we made use of the fact that 1 is a simple eigenvalue of the integral operator K and there is only

one eigenfunction corresponding to this eigenvalue [14].

By the ergodic theorem [18,19], for an arbitrary initial distribution, P0, and bounded function v,

I ½v� �
Z
oG

vðyÞp1ðyÞ drðyÞ ¼ lim
N!1

1

N

XN
n¼1

vðynÞ: ð4Þ

Note that we use both the even and odd indexed points of the Markov chain in this sum since by (3)
p1 ¼ Kp1.
3. A Monte Carlo estimator for computing capacitance

Consider the Robin potential, u, inside G. The boundary conditions state that the Robin potential is

constant and equal to one in G. The interpretation of this hearkens back to elementary physics where one

learns that inside a conductor the electrical potential is constant. Thus, we haveZ
oG

1

jx� y 0j lðy
0Þ drðy0Þ ¼ 1; ð5Þ

for any point x 2 G. Therefore, we may fix x 2 G and set vðyÞ ¼ 1=jx� yj.
Together, the relations (3)–(5) result in the following formula (see [12])

C ¼ lim
N!1

1

N

XN
n¼1

vðynÞ
 !�1

; ð6Þ

which will be used to calculate the capacitance.

To estimate the computational error, we use a Markov chain version of the central limit theorem [18,19].

It states that ð1=NÞ
PN

n¼1 vðynÞ tends to a normally distributed random variable with mean I ½v� and variance

r2N�1. Here,

r2 ¼ lim
N!1

Z
oG

p1
1ffiffiffiffi
N

p
XN
n¼1

vðynÞð
"

� I ½v�Þ
#2
:

This means that the error of our computational algorithm is of the statistical nature. Hence, for a given
accuracy e, the cost of computations is of order r2e�2.
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To evaluate r2, we use the method of batch means [20] with the number of batches, k þ 1, equal toffiffiffiffi
N

p
þ 1 and the batch size, m, equal to

ffiffiffiffi
N

p
. Thus, we have

r2 ¼ lim
m!1; k!1

m
k

Xk
i¼0

1

m
Si

�
� 1

N
S
�2

;

where Si ¼
Pmðiþ1Þ

j¼miþ1 vðyjÞ, S ¼
Pk

i¼0 Si.
Note, that the algorithm based on (6) provides a method to obtain the value of the capacitance without

explicitly calculating the density, l.
4. Computing charge density

To calculate the charge distribution, we use relations (3) and (4) and construct Monte Carlo estimators

for iterations either of the integral operator K or its adjoint. These estimators are based on a ‘‘random walk

on the boundary’’ process that is not necessarily isotropic. Let pðyn ! ynþ1Þ be the transition probability

density of this Markov chain, fyn; n ¼ 0; 1; . . .g. Then, for some integrable functions f 2 LðoGÞ and

h 2 L�ðoGÞ the direct and adjoint estimators, respectively, are defined as [12]

ðh;Knf Þ ¼ EQnhðynÞ ¼ EQ�
nf ðynÞ:

Here

Q0 ¼
f ðy0Þ
p0ðy0Þ

; Qnþ1 ¼ Qn
kðynþ1; ynÞ

pðyn ! ynþ1Þ
;

and

Q�
0 ¼

hðy0Þ
p0ðy0Þ

; Q�
nþ1 ¼ Q�

n

kðyn; ynþ1Þ
pðyn ! ynþ1Þ

:

Therefore, since we are integrating an absolutely convergent series, we have

ðh; lÞ ¼ Cðh; p1Þ ¼ lim
N!1

C
N

XN
n¼1

ðh;Knp0Þ: ð7Þ

It is clear that to compute the density, lðyÞ, at some point, y 2 oG, we have to set hðy0Þ ¼ dðy � y0Þ. Note,

however, that this last equality is valid only for bounded functions, h. To overcome this, we introduce a
partition, 1j; j ¼ 1; . . . ;m, on the boundary surface: oG ¼

Sm
j¼1 1j, and use a piecewise constant approxi-

mation for l. Thus, we reduce the problem to the estimation of a finite number of cell values, or in other

words, to a finite number of functionals (7) with different weight functions hjðyÞ ¼ v½1j�ðyÞ=rð1jÞ. Here v½�� is
the indicator function.

Hence, it is possible to use a direct estimator, and set p0 ¼ f ¼ p0. From this it follows that for convex G
all weights, Qn, are equal to 1 and so

lðyÞ � lim
N!1

NjC
Nrð1jÞ

for y 2 1j; ð8Þ

where Nj is the number of Markov chain points that hit the cell 1j (see [12]).

We thus arrive at an algorithm that makes it possible to calculate both the capacitance and the charge

distribution simultaneously. Initially, we randomly choose a point y0 on oG with probability density p0. One
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of the possible choices for such a density is to set p0ðyÞ ¼ cosuyx=ð2pjy � xj2Þ for some x inside the domain

G. This means that y0 is distributed isotropically within the solid angle with vertex x. Next, we simulate a

long Markov chain of points using isotropic ‘‘random walk on the boundary,’’ and calculate C�1 using (6),
and the numbers, Nj, with the methods described above. Finally, using (8) we obtain an approximation to

the charge distribution.
5. Computational results for the unit cube

To illustrate the computational technique described, we calculate the capacitance of the unit cube and

the charge density on its surface. This problem has no analytic solution, and has long been regarded as a
benchmark in the electrostatic theory [3]. Different computational methods were used to solve it: boundary

element [4,21,23], finite-difference [22], and stochastic algorithms [7,9,24] as well. The results (in units of

4p�0) and their published errors (in different senses) are given in Table 1. The most accurate value obtained

so far was due to Read [4]. He used the (deterministic) boundary element method with extrapolation, as was

described in the introduction to this paper.

Our result is 0.6606780, with a statistical error (two standard deviations) of 2:7� 10�7. This was ob-

tained by using the estimator (6) with N ¼ 1012. It is essential to note that to compute the result to the

statistical accuracy of 5:4� 10�5 it took only 30 s on an ordinary desktop computer. The same compu-
tations performed on a k-node cluster with k independent streams of pseudorandom numbers (e.g. from the

SPRNG library [25]) would decrease the computational time by factor 1=k. Also we found out that

the ergodic walk on boundary algorithm is the most efficient Monte Carlo method for this problem. It has

the smallest variance, the smallest computational complexity, and there is no bias in the estimate.

It essential to note that when computing only the capacitance via the ‘‘walk on the boundary algorithm,’’

there is no need to partition the domain surface. However, when also evaluating the charge density, we are

compelled to introduce a partition for the purpose of producing a histogram of the computed charge

density. It is well known that the charge distribution is singular along discontinuous edges on the surface.
For an edge formed at an obtuse angle, h, the dependence of the density, l, on the distance, r, from the edge

is given by [26] l ¼ const: r�a, where a ¼ 1� p=h. For the edge of the cube h ¼ 3p=2, so a is equal to �1=3
in this case. To take this singularity into account, we introduce a nonuniform grid on every face of the cube.

This is chosen in such a way that every segment has approximately the same total charge. Divisions with M
elements on every face were considered, where we took M to be equal to 1002; 2002 and 10002. The results

show a linear dependence of the logarithm of charge density on the logarithm of the distance to the edge of

the cube, with a slope predicted by the theory (see Fig. 1). Approximately linear log–log dependence re-

mains valid when we consider the density versus the distance to a vertex along the diagonal line of the
cube�s face (Fig. 2). The computed charge density distribution on the cube�s surface is shown in Fig. 3.
Table 1

Values for the capacitance of the unit cube

Reitan and Higgins [21] 0.6555

Greenspan and Silverman [22] 0.661

Goto et al. [23] 0:6606747	 5� 10�7

Zhou et al. [7] 0:6632	 3� 10�4

Given et al. [9] 0:660675	 1� 10�5

Read [4] 0:6606785	 6� 10�7

Hwang and Mascagni [24] 0:660683	 5� 10�6

Our result 0:6606780	 2:7� 10�7



Fig. 1. Log–log plot of charge density versus distance to the edge for the points lying in the middle of the cube�s face. Linear regression
ln l ¼ �1:366� 0:333 ln r (theory gives value �1=3 for the second coefficient in the case of the dihedral angle formed by two infinite

planes).

Fig. 2. Log–log plot of charge density versus distance to the cube�s vertex along the diagonal. Linear regression ln l ¼ �1:415�
0:558 ln r.
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Fig. 3. Charge density distribution on the surface of the unit cube.
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6. Directions for future research

In this paper we described an application of the ergodic random �walk on the boundary algorithm� for
solving elliptic boundary value problems arising from electrostatics, specifically for computing the capac-

itance of and the charge density on a conducting body. The ergodic random �walk on the boundary� al-
gorithm proved to be extremely efficient in this case. It was used to produce the most accurate calculation

known to date for the capacitance of the unit cube. Note, however, that this method is limited to the case of

convex conductors. So one of the tasks for future research is to investigate the possibility of and conditions

for applying this algorithm to electrostatic (elliptic) problems where the domain may not be convex. This

will be particularly important in biophysical calculations where the domain will be the union of spherical

atomic surfaces.
It is clear that some of the computational algorithms mentioned here may be more efficient in some

special cases, so it is essential to compare these methods, and to propose �rules of thumb� for their use across
a broad range of problems. For example, it seems that the backward random walk method is the most

appropriate method to calculate point values of the charge distribution. We plan to undertake some model

computations comparing all the known algorithms in this context in order to obtain empirical performance

data for making such recommendations.
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